Baron, C.; Springer, H.; Raabe, D.: Efficient liquid metallurgy synthesis of Fe–TiB2 high modulus steels via in-situ reduction of titanium oxides. Materials and Design 97, pp. 357 - 363 (2016)
Springer, H.; Belde, M. M.; Raabe, D.: Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability. Materials and Design 90, pp. 1100 - 1109 (2016)
Pradeep, K. G.; Tasan, C. C.; Yao, M.; Deng, Y.; Springer, H.; Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 648, pp. 183 - 192 (2015)
Springer, H.; Szczepaniak, A.; Raabe, D.: On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminium alloys. Acta Materialia 96, pp. 203 - 211 (2015)
Belde, M. M.; Springer, H.; Inden, G.; Raabe, D.: Multiphase microstructures via confined precipitation and dissolution of vessel phases: Example of austenite in martensitic steel. Acta Materialia 86, pp. 1 - 14 (2015)
Springer, H.; Tasan, C. C.; Raabe, D.: A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials. International Journal of Materials Research 106 (1), pp. 3 - 14 (2015)
Koyama, M.; Springer, H.; Merzlikin, S. V.; Tsuzaki, K.; Akiyama, E.; Raabe, D.: Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. International Journal of Hydrogen Energy 39 (9), pp. 4634 - 4646 (2014)
Springer, H.; Raabe, D.: Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Materialia 60, pp. 4950 - 4959 (2012)
Springer, H.; Kostka, A.; dos Santos, J. F.; Raabe, D.: Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Materials Science Engineering A 528, pp. 4630 - 4642 (2011)
Springer, H.; Kostka, A.; Payton, E.J.; Raabe, D.; Kaysser-Pyzalla, A. R.; Eggeler, G.: On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Materialia 59 (4), pp. 1586 - 1600 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…