Eisenlohr, P.: Einheitliche Beschreibung dynamischer und statischer Erholung von Stufenversetzungen mittels Dipolweitenverteilungen. Seminar of the Institute of Materials Physics, University of Vienna, Vienna, Austria (2003)
Reuber, J. C.; Eisenlohr, P.; Roters, F.: Boundary Layer Formation in Continuum Dislocation Dynamics. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. 11th GAMM-Seminar on Microstructures, Essen, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
Kords, C.; Eisenlohr, P.; Roters, F.: Signed dislocation densities and their spatial gradients as basis for a nonlocal crystal plasticity model. MMM 2010 Fifth International Conference Multiscale Materials Modeling, Freiburg, Germany (2010)
Kords, C.; Eisenlohr, P.; Roters, F.: A Non-Local Dislocation Density Based Constitutive Model for Crystal Plasticity. Junior Euromat 2010, Lausanne, Switzerland (2010)
Eisenlohr, P.: On the role of dislocation dipoles in unidirectional deformation of crystals. Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.