Kanjilal, A.; Aliramaji, S.; Neuß, D.; Hans, M.; Schneider, J. M.; Best, J. P.; Dehm, G.: Microscale deformation of an intermetallic-metal interface in bi-layered film under shear loading. Scripta Materialia 263, 116665 (2025)
Jentner, R.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Local strength of bainitic and ferritic HSLA steel constituents understood using correlative electron microscopy and microcompression testing. Materials and Design 236, 112507 (2023)
Jentner, R.; Tsai, S.-P.; Welle, A.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Automated classification of granular bainite and polygonal ferrite by electron backscatter diffraction verified through local structural and mechanical analyses. Journal of Materials Research 38 (18), pp. 4177 - 4191 (2023)
Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLoS One 18 (2), e0281703 (2023)
Shi, J.; Ma, S.; Best, J. P.; Stolpe, M.; Wei, S.; Zhang, P.; Markert, B.: Gradient-enhanced modelling of deformation-induced anisotropic damage in metallic glasses. Journal of the Mechanics and Physics of Solids 167, 105020 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…