Esakkiraja, N.; Gupta, A.; Jayaram, V.; Hickel, T.; Divinski, S. V.; Paul, A.: Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy. Acta Materialia 195, pp. 35 - 49 (2020)
Schwarze, C.; Gupta, A.; Hickel, T.; Kamachali, R. D.: Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling. Physical Review B 95 (17), 174101 (2017)
Gupta, A.; Dutta, B.; Hickel, T.; Neugebauer, J.: Thermodynamic phase stability in the Al–Sc system using first principles methods. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Bajaj, P.; Gupta, A.; Jägle, E. A.; Raabe, D.: Precipitation kinetics during non-linear heat treatment in Laser Additive Manufacturing. International Conference on Advanced Materials and Processes, ‘ADMAT 2017’ SkyMat, Thiruvananthapuram, India (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.