Kawano, T.; Renner, F. U.: Studies on Wetting Behaviour of Hot-dip Galvanizing Process by use of Model Specimens with Tailored Surface Oxides. Surf. Int. Anal. 44 (8), pp. 1009 - 1012 (2012)
Kawano, T.; Renner, F. U.: Tailoring Model Surface and Wetting Experiment for a Fundamental Understanding of Hot-dip Galvanizing. ISIJ International 51, 10, pp. 1703 - 1709 (2011)
Kawano, T.; Renner, F. U.: Tailoring Model Surfaces and Wettability Measurement for a Fundamental Understanding of Hot-dip Galvanizing. DPG Meeting, Regensburg, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…