Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Diehl, M.; Eisenlohr, P.; Roters, F.; Lebensohn, R. A.; Raabe, D.: Solving Elastoviscoplastic Mechanical Boundary Value Using a Spectral Method. Evaluierung des Christian-Doppler-Laboratorium für Werkstoffmechanik von Hochleistungslegierungen, Garching, Germany (2010)
Raabe, D.; Fabritius, H.; Nikolov, S.; Petrov, M.; Friak, M.; Elstnerová, P.; Neugebauer, J.: Ab initio based multiscale modeling of biological composites: Example of the exoskeleton of the lobster Homarus Americanus. Colloquium Lecture, Center for Nanoscience CeNS, Ludwigs-Maximilians Universität München, München, Germany (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Compositional Dependence of the Mechanical Properties of Laves Phases in the Fe–Nb(–Al) and Co–Nb(–Al) Systems. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Calcagnotto, M.; Ponge, D.; Adachi, Y.; Raabe, D.: Effect of grain refinement to 1 µm on deformation and fracture mechanisms in ferrite/martensite dual-phase steels. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Identification of fundamental materials‐design limits in ultra lightweight Mg–Li alloys via quantum-mechanical calculations. Multiscale Materials Modeling, Freiburg, Germany (2010)
Zambaldi, C.; Raabe, D.: Surface Topographies after Nanoindentation and their Utilization to Quantify the Plastic Anisotropy of Gamma-TiAl on the Single Crystal Length Scale. MMM 2010, Freiburg, Germany (2010)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments to improve the micromechanical understanding of single crystal gamma-TiAl and gamma-TiAl based microstructures. MMM 2010 Fifth International Conference Multiscale Materials Modeling, Freiburg, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Hild, S.; Huemer, K.; Seidl, B.; Ziegler, A. S.; Fabritius, H.-O.; Raabe, D.: Crustacean cuticle: An example to study the influence of chemical composition and microstructure on the mechanical properties of hierarchically structured biological composite materials. Workshop Prospects in BIONIC, Leoben, Austria (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.