Dehm, G.: Mikromechanik: lokale Einblicke in die mechanischen Eigenschaften von Materialien. Eröffnung des Christian Doppler Labors für
Lebensdauer und Zuverlässigkeit von Grenzflächen in komplexen Mehrlagenstrukturen der Elektronik „RELAB“, Vienna, Austria (2015)
Dehm, G.: New insights into the mechanical behavior of interface controlled metals. Colloquium Materials Modelling, Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF), Universität Stuttgart , Stuttgart, Germany (2015)
Dehm, G.; Imrich, P. J.; Malyar, N.; Kirchlechner, C.: Differences in deformation behavior of bicrystalline Cu micropillars containing different grain boundaries. MS&T 2015 (Materials Science and Technology) meeting, symposium entitled "Deformation and Transitions at Grain Boundaries", Columbus, OH, USA (2015)
Dehm, G.; Zhang, Z.; Völker, B.: Structure and strength of metal-ceramic interfaces: New insights by Cs corrected TEM and advances in miniaturized mechanical testing. MS&T 2015 (Materials Science and Technology) meeting, Symposium entitled "Structures and Properties of Grain Boundaries: Towards an atomic-scale understanding of ceramics", Columbus, OH, USA (2015)
Dehm, G.; Harzer, T. P.; Völker, B.; Imrich, P. J.; Zhang, Z.: Towards New Insights on Interface Controlled Materials by Advanced Electron Microscopy. Frontiers of Electron Microscopy in Materials Science Meeting (FEMMS 2015), Lake Tahoe, CA, USA (2015)
Dehm, G.; Jaya, B. N.; Raghavan, R.; Kirchlechner, C.: Probing deformation and fracture of materials with high spatial resolution. Euromat 2015 - Symposium on In-situ Micro- and Nano-mechanical, Characterization and Size Effects
, Warsaw, Poland (2015)
Dehm, G.: In situ nano- and micromechanics of materials. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices – IAMNano 2015, Hamburg, Germany (2015)
Duarte, M. J.; Brinckmann, S.; Renner, F. U.; Dehm, G.: Nanomechanical testing under environmental conditins of Fe-based metallic glasses. 22st International Symposium on Metastable Amorphous and Nanostructured Materials, ISMANAM 2015, Paris, France (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. Understanding Grain Boundary Migration: Theory Meets Experiment, Günzburg/Donau, Germany (2015)
Malyar, N.; Kirchlechner, C.; Dehm, G.: Dislocation grain boundary interaction in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. ICM 12 - 12th International Conference on the Mechanical Behavior of Materials, Karlsruhe, Germany (2015)
Dehm, G.: In situ nanocompression testing in the TEM: Challenges and benefits. Symposium Advanced Electron Microscopy for Materials Research, Erlangen, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.