Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Relaxed grain cluster (RGC) scheme for polycrystals: Model formulation and solution strategy. Computational Mechanics of Polycrystals (CMCn) Workshop 2010, Bad Honnef, Germany (2010)
Eisenlohr, P.; Kords, C.; Roters, F.; Raabe, D.: A non-local crystal plasticity model based on polar dislocation densities. 16th Int. Symp. on Plasticity and Its Current Applications, St. Kitts, St. Federation of Saint Kitts and Nevis (2010)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Coarse-graining of polycrystal plasticity with the Relaxed Grain Cluster scheme. Seminar des Instituts für Technische Mechanik, Karlsruher Institut für Technologie, Karlsruhe, Germany (2009)
Roters, F.; Demir, E.; Eisenlohr, P.: On the calculation of the geometrically necessary dislocation density in crystal plasticity FEM models. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Application of the relaxed grain cluster homogenization scheme to deep drawing simulation of dual-phase steel. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Crystal plasticity modeling for property extraction and the microstructure properties relation of intermetallic -TiAl nased alloys. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Peranio, N.; Schulz, S.; Li, Y. J.; Roters, F.; Raabe, D.; Masimov, M.; Springub, G.: Processing of dual-phase steel for automotive applications: Microstructure and texture evolution during annealing and numerical simulation by cellular automata. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, UK (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Analysis of the relaxed grain cluster polycrystal homogenization scheme in texture prediction. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; van Swygenhoven, H.: Crystal plasticity finite element study on small scale plasticity of micropillars. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments for the microstructureproperties relationship in gamma TiAl based alloys. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; Van Swygenhoven, H.: Crystal Plasticity finite element method study on small scale plasticity. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Roters, F.; Hantcherli, L.; Eisenlohr, P.: Incorporating Twinning into the Crystal Plasticity Finite Element Method. International Plasticity Conference 2009, Virgin Islands, USA (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.