Roters, F.; do Nascimento, A. W. P.; Roongta, S.; Diehl, M.: An optimized method for the simulation-based determination of initial parameters of advanced yield surfaces for sheet metal forming applications. Complas 2021, online (2021)
Raabe, D.; Diehl, M.; Shanthraj, P.; Sedighiani, K.; Roters, F.: Multi-scale and multi-physics simulations of chemo-mechanical crystal plasticity problems for complex engineering materials using DAMASK. Online Colloquium Lecture, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden (2020)
Roters, F.; Diehl, M.; Sedighiani, K.: (Re-) formulation of dislocation density based crystal plasticity models in view of insights from parameter determination. Oberwolfach Workshop: Mechanics of Materials: Towards Predictive Methods for Kinetics in Plasticity, Fracture, and Damage, Oberwolfach, Germany (2020)
Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Bos, K.; Sietsma, J.; Raabe, D.: A Coupled Crystal Plasticity – Cellular Automaton Method for 3D Modeling of Recrystallization: Part I: Crystal Plasticity. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: Understanding the Plastic Behavior of Tungsten From First Principles to Crystal Plasticity. International Mechanical Engineering Congress & Exposition (IMECE) 2019, Salt Lake City, UT, USA (2019)
Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Determination and validation of BCC crystal plasticity parameters for a wide range of temperatures and strain rates. 7th Conference on Recrystallization and Grain Growth, REX 2019, Ghent, Belgium (2019)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites for Recrystallization using Crystal Plasticity Simulations. 7th International Conference on Recrystallization and Grain Growth, Ghent, Belgium (2019)
Diehl, M.; Roters, F.; Raabe, D.: Coupled Experimental-Computational Investigations of Grain Scale Mechanics in Complex Metallic Microstructures. 15th U.S. National Congress on Computational Mechanics, Ausrin, TX, USA (2019)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modeling of plasticity. ICIAM 2019 - The 9th International Congress on Industrial and Applied Mathematics, Valencia, Spain (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…