Grabowski, B.; Söderlind, P.; Hickel, T.; Neugebauer, J.: Ab Initio Thermodynamics of the fcc-bcc Transition in Ca Including All Relevant FiniteTemperature Excitation Mechanisms. TMS 2012, Orlando, FL, USA (2012)
Grabowski, B.: Ab initio prediction of materials properties up to the melting point. Condensed Matter and Materials Division seminar series, Lawrence Livermore National Lab, Livermore, CA, USA (2012)
Grabowski, B.: Ab initio prediction of materials properties up to the melting point. Seminar: "Ab initio Description of Iron and Steel: Thermodynamics and Kinetics", Tegernsee, Germany (2012)
Hickel, T.; Glensk, A.; Grabowski, B.; Neugebauer, J.: Ab initio up to the melting point: Integrated approach to derive accurate thermodynamic data for Al alloys. European Aluminium Association, European Aluminium Technology Platform, Working Group 5: Predictive Modelling, 5th workshop: ab initio modelling, Aachen, Germany (2011)
Grabowski, B.; Hickel, T.; Glensk, A.; Neugebauer, J.: Integrated approach to derive thermodynamic data for pure Al and Al alloys up to the melting point. Psi-k Conference 2010, Berlin, Germany (2010)
Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio prediction of thermodynamic data for selected phases of the Al-Mg-Si-Cu system. CECAM Summer School on Computational Materials Sciences, San Sebastian, Spain (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…