Mukherjee, T.; Breitbach, B.; Meneghetti, M.; Rabe, M.: Broadening the Ambit of Raman Solvation Shell Spectroscopy on Small Particle Dispersions. Journal of Physical Chemistry C 129 (39), pp. 17892 - 17901 (2025)
Mukherjee, T.; Breitbach, B.; Meneghetti, M.; Rabe, M.: Raman hydration shell spectroscopy can be applied to study solvation shells of nanomaterials. 17th International conference on materials chemistry (MC17), Edinburgh, Scotland, UK (2025)
Mukherjee, T.: Applying Raman Solvation Shell Spectroscopy to Study Water Surrounding Nanoparticles. RESOLV Klausurtagung, Marienfeld (Harsewinkel), Germany (2025)
Mukherjee, T.; Rabe, M.: Solvation Shell Water around Citrate-stabilised Gold Nanoparticle. Bunsen-Tagung 2024 - 123rd Annual Conference of the German Bunsen Society for Physical Chemistry
, Aachen, Germany (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…