Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles. Physical Review Materials 2 (3), 030601 (2018)
Ko, W.-S.; Shim, J.-H.; Jung, W.-S.; Lee, B.-J.: Computational screening of alloying elements for the development of sustainable V-based hydrogen separation membranes. Journal of Membrane Science 497, pp. 270 - 281 (2016)
Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Development and application of a Ni–Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Physical Review B 92 (13), 134107 (2015)
Seol, J. B.; Ko, W.-S.; Bae, J. W.; Jo, Y. H.; Li, Z.; Choi, P.-P.; Raabe, D.; Kim, H. S.: Transition in boron boundary cohesion from effectiveness to harmfulness with respect to application temperatures: high-entropy alloys and Ni-based superalloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…