Jörg, T.; Cordill, M. J.; Franz, R.; Kirchlechner, C.; Többens, D. M.; Winkler, J.; Mitterer, C.: Thickness dependence of the electro-mechanical response of sputter deposited Mo thin films on polyimide: Insights from in situ synchrotron diffraction tensile tests. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 697, pp. 17 - 23 (2017)
Cordill, M. J.; Marx, V. M.; Kirchlechner, C.: Ductile film delamination from compliant substrates using hard overlayers. Thin Solid Films 571 (P2), pp. 302 - 307 (2014)
Cordill, M. J.; Taylor, A. A.; Berger, J.; Schmidegg, K.; Dehm, G.: Robust mechanical performance of chromium-coated polyethylene terephthalate over a broad range of conditions. Philosophical Magazine 92 (25-27), pp. 3346 - 3362 (2012)
Taylor, A. A.; Cordill, M. J.; Dehm, G.: On the limits of the interfacial yield model for fragmentation testing of brittle films on polymer substrates. Philosophical Magazine 92 (25-27), pp. 3363 - 3380 (2012)
Taylor, A. A.; Edlmayr, V.; Cordill, M. J.; Dehm, G.: The effect of temperature and strain rate on the periodic cracking of amorphous AlxOy films on Cu. Surface and Coatings Technology 206 (7), pp. 1855 - 1859 (2011)
Taylor, A. A.; Edlmayr, V.; Cordill, M. J.; Dehm, G.: The effect of film thickness variations in periodic cracking: Analysis and experiments. Surface and Coatings Technology 206 (7), pp. 1830 - 1836 (2011)
Cordill, M. J.; Schmidegg, K.; Dehm, G.: Interface failure and adhesion measured by focused ion beam cutting of metal-polymer interfaces. Philosophical Magazine Letters 91 (8), pp. 530 - 536 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…