Koyama, M.; Springer, H.; Merzlikin, S. V.; Tsuzaki, K.; Akiyama, E.; Raabe, D.: Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. International Journal of Hydrogen Energy 39 (9), pp. 4634 - 4646 (2014)
Koyama, M.; Akiyama, E.; Tsuzaki, K.; Raabe, D.: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Materialia 61 (12), pp. 4607 - 4618 (2013)
Akiyama, E.; Stratmann, M.; Hassel, A. W.: Discrete electrochemical transients of aluminium alloys generated by slurry jet impingement. J. Phys. D: Appl. Phys. 39, pp. 3157 - 3164 (2006)
Akiyama, E.; Hassel, A. W.; Stratmann, M.: A study of current transients caused by single particle impact on electrodes. In: Proceed. Asian Pacific Corr. Contr. Conf. 13, pp. C02 1 - C02 8. (2003)
Koyama, M.; Tasan, C. C.; Akiyama, E.; Tsuzaki, K.; Raabe, D.: Influence of hydrogen on dual-phase steel micro-mechanics. 2nd International Workshop on Physics-Based Modelling of Material Properties & Experimental Observations, Antalya, Turkey (2013)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. COST F2 2nd Workshop „Local Flow Effects in Hydrodynamic Systems”, Paris, France (2003)
Akiyama, E.; Hassel, A. W.; Stratmann, M.: A study of current transients caused by single particle impact on electrodes. 13th Asian Pacific Corrosion Control Conference, Osaka, Japan (2003)
Hassel, A. W.; Akiyama, E.; Smith, A.; Tan, K. S.; Stratmann, M.: Dynamic and Quasi Static Particle Impingement in Flow Corrosion. Seminar an der Graduate School of Engineering der Universität von Hokkaido, Sapporo, Japan (2003)
Akiyama, E.; Hassel, A. W.; Stratmann, M.: Measurements of electrochemical responses caused by a single particle impact in slurry impingement. 50th Zairyo-to-Kankyo Meeting, Okinawa, Japan (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…