Philippi, B.; Kirchlechner, C.; Micha, J.-S.; Dehm, G.: Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Materialia 115, pp. 76 - 82 (2016)
Imrich, P. J.; Kirchlechner, C.; Dehm, G.: Influence of inclined twin boundaries on the deformation behavior of Cu micropillars. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 642, pp. 65 - 70 (2015)
Imrich, P. J.; Kirchlechner, C.; Kiener, D.; Dehm, G.: In situ TEM microcompression of single and bicrystalline samples: insights and limitations. JOM-Journal of the Minerals Metals & Materials Society 67 (8), pp. 1704 - 1712 (2015)
Imrich, P. J.; Kirchlechner, C.; Kiener, D.; Dehm, G.: Internal and external stresses: in situ TEM compression of Cu bicrystals containing a twin boundary. Scripta Materialia 100, pp. 94 - 97 (2015)
Kapp, M. W.; Kapp, M. W.; Kirchlechner, C.; Pippan, R.; Dehm, G.: Importance of dislocations pile-ups on the mechanical properties and the Bauschinger effect in micro cantilevers. Journal of Materials Research 30 (6), pp. 791 - 797 (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Can micro-scale fracture tests provide reliable fracture toughness values? A case study in silicon. Journal of Materials Research 30 (5), pp. 686 - 698 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…