Sachs, C.; Fabritius, H.; Pitsch, F.; Raabe, D.: Nanoindentation as tool to investigate micro-mechanical properties in the hierarchical structure of biological materials. MRS Fall Meeting, Boston, MA, USA (2007)
Nikolov, S.; Sachs, C.; Counts, W. A.; Fabritius, H.; Raabe, D.: Modeling of the Mechanical Behavior of Bone at Submicron Scale through Mean-Field Homogenization. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2007), Nürnberg, Germany (2007)
Sachs, C.; Fabritius, H.; Nikolov, S.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. DPG Spring Meeting, Regensburg, Germany (2007)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.: Microstructure and micromechanics of hard biological tissues: From lobster cuticle to human bone. Seminar talk at Université Catholique de Louvain, Dept. of Applied Sciences, Louvain, Belgium (2007)
Fabritius, H.; Sachs, C.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. Second International Conference on Mechanics of Biomaterials & Tissues (ICMBT 2007), Lihue, HI, USA (2007)
Sachs, C.; Fabritius, H.; Raabe, D.: Mechanical Properties of the Lobster Cuticle Investigated by Bending Tests and Digital Image Correlation. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Romano, P.; Raabe, D.: Viscoelastic Behavior of Lobster Cuticle as a Function of Mineralization Grade. MRS Fall Meeting, Boston, MA, USA (2005)
Fabritius, H.; Romano, P.; Sachs, C.; Al-Sawalmih, A.; Raabe, D.: Arthropod cuticle as an example for bio-composite materials with a strong hierarchical order from the nano- to the macro-level of organization. MRS Fall Meeting, Boston, MA, USA (2005)
Sachs, C.: Elastic-plastic behavior of the lobster cuticle. Organized by: GOM – Gesellschaft für Optische Messtechnik GmbH, Braunschweig, Germany (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Microstructure and Mesostructure of the exoskeleton of the lobster homarus americanus. MRS Spring Meeting, San Francisco, CA, USA (2005)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.
The general success of large language models (LLM) raises the question if they could be applied to accelerate materials science research and to discover novel sustainable materials. Especially, interdisciplinary research fields including materials science benefit from the LLMs capability to construct a tokenized vector representation of a large…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…