Körmann, F.; Hickel, T.; Neugebauer, J.: Phase stabilities of metals and steels - The impact of magnetic excitations from fi rst-principles. ADIS (Ab initio Description of Iron and Steel) Conference 2014 , Ringberg Castle, Rottach-Egern, Germany (2014)
Zhang, X.; Hickel, T.; Rogal, J.; Drautz, R.; Neugebauer, J.: Atomistic origin of structural modulations in Fe ultrathin film and impact for structural transformations in Fe–C alloys. ADIS Workshop 2014, Ringberg, Germany (2014)
Körmann, F.; Grabowski, B.; Palumbo, M.; Fries, S. G.; Hickel, T.; Neugebauer, J.: Strong and weak magnetic coupling in chromium. ICAMS Advanced Discussions - Current Developments, Ruhr-Universität-Bochum, Bochum, Germany (2013)
Grabowski, B.; Glensk, A.; Korbmacher, D.; Huang, L.; Körmann, F.; Hickel, T.; Neugebauer, J.: First principles at finite temperatures: New approaches and massively parallel computations. CMSI International Symposium 2013: Extending the power of computational materials sciences with K-computer, Ito International Research Center, University of Tokyo, Japan (2013)
Hickel, T.; Nazarov, R.; Neugebauer, J.: Aspekte der Wasserstoffversprödung von Stählen: Verständnisgewinn durch quantenmechanische Simulationen. AKE Workshop, DECHEMA, Frankfurt a. M, Germany (2013)
Dey, P.; Nazarov, R.; Friák, M.; Hickel, T.; Neugebauer, J.: kappa-carbides as precipitates in austenitic steels: Ab initio study of structural, magnetic and Interface properties. EUROMAT 2013, Sevilla, Spain (2013)
Dutta, B.; Körmann, F.; Dey, P.; Hickel, T.; Neugebauer, J.: Ab-initio based prediction of chemical trends for phase transitions in magnetic shape memory alloys. Weekly Seminar, Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Dutta, B.; Hickel, T.; Neugebauer, J.: Ab-initio based prediction of chemical trends in magnetic shape memory alloys. Mini Workshop on Lattice Dynamics, Uppsala University, Uppsala, Sweden (2013)
Dutta, B.; Hickel, T.; Neugebauer, J.: Phase transitions in magnetic shape memory alloys: Ab-initio based prediction of chemical trends. Fourth International Conference on Ferromagnetic Shape Memory Alloys (ICFSMA'13), Boise, ID, USA (2013)
Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.-P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Nanoscale Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…