Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity 66, pp. 31 - 45 (2015)
Tasan, C. C.; Hoefnagels, J. P.M.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D.: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity 63, pp. 198 - 210 (2014)
Eisenlohr, P.; Diehl, M.; Lebensohn, R. A.; Roters, F.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity 46, pp. 37 - 53 (2013)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
Diehl, M.; Naunheim, Y.; Yan, D.; Morsdorf, L.; An, D.; Tasan, C. C.; Zaefferer, S.; Roters, F.; Raabe, D.: Coupled Experimental-Numerical Analysis of Strain Partitioning in Metallic Microstructures: The Importance of Considering the 3D Morphology. In: Session 1.3a, Strain Measurement at the Microscale 1, pp. 1 - 2. BSSM 12th International Conference on Advances in Experimental Mechanics, Sheffield, UK, August 29, 2017. (2017)
Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjanto, D. D.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA, May 17, 2011 - May 19, 2011. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, (2012)
Otto de Mentock, D.; Roongta, S.; Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F.: Challenges of Developing and Scaling up DAMASK, a Unified Large-strain Multi-physics Crystal Plasticity Simulation Software. TMS - Algorithm Development in Materials Science and Engineering, Orlando, FL, USA (2024)
Roters, F.; Diehl, M.; Eisenlohr, P.; Shanthraj, P.: DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying multi-field crystal plasticity phenomena. Seminar at Harbin Institute of Technology, online
, Shenzhen, China (2023)
Kusampudi, N.; Diehl, M.: Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization. Working Group Microstructural Mechanics, Deutsche Gesellschaft für Materialkunde e.V., Applications of Machine Learning for Mechanical Behavior of Materials, Online (2022)
Roters, F.; Diehl, M.; Eisenlohr, P.; Shanthraj, P.: DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying multi-field crystal plasticity phenomena. Seminar, Engineering Science Department at the University of Oxford, virtual, Oxford, UK (2021)
Diehl, M.; Kusampudi, N.: Using machine learning and crystal plasticity simulation to design damage resistant dual phase steels. Webinar: Metal Plasticity Seminar - Artificial Intelligence, Machine Learning and Big Data in Metal Plasticity, Leuven, Belgium (2021)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.