Zhang, J.; Zaefferer, S.: Influence of sample preparation on nanoindentation results of twinning-induced plasticity steel. International Journal of Minerals, Metallurgy and Materials 28, pp. 877 - 887 (2021)
Guo, X.; Zaefferer, S.; Archie, F. M. F.; Bleck, W.: Hydrogen effect on the mechanical behaviour and microstructural features of a Fe–Mn–C twinning induced plasticity steel. International Journal of Minerals, Metallurgy and Materials 28, pp. 835 - 846 (2021)
An, D.; Zhang, X.; Zaefferer, S.: The combined and interactive effects of orientation, strain amplitude, cycle number, stacking fault energy and hydrogen doping on microstructure evolution of polycrystalline high-manganese steels under low-cycle fatigue. International Journal of Plasticity 134, 102803 (2020)
An, D.; Zhao, H.; Sun, B.; Zaefferer, S.: Direct observations of collinear dislocation interaction in a Fe–17.4 Mn–1.50 Al–0.29 C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction. Scripta Materialia 186, pp. 341 - 345 (2020)
An, D.; Krieger, W.; Zaefferer, S.: Unravelling the effect of hydrogenon microstructure evolution under low-cycle fatigue in a high-manganese austenitic TWIP steel. International Journal of Plasticity 126, 102625 (2020)
Tripathi, A.; Zaefferer, S.: On the resolution of EBSD across atomic density and accelerating voltage with a particular focus on the light metal magnesium. Ultramicroscopy 207, 112828 (2019)
An, D.; Zaefferer, S.: Formation mechanism of dislocation patterns under low cycle fatigue of a high-manganese austenitic TRIP steel with dominating planar slip mode. International Journal of Plasticity 121, pp. 244 - 260 (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.