Wicinski, M.; Hassel, A. W.; Stratmann, M.: Investigation of delamination by spatiotemporal measurements of current and potential. Electrochem 2003, Southhampton, UK (2003)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Anodic Polarization Behavior of Shape Memory NiTi-Alloy in H2SO4 Aqueous Solution. The Meeting of The Electrochemical Society of Japan 2003, Sapporo, Japan (2003)
Hassel, A. W.; Fushimi, K.; Stratmann, M.; Seo, M.: Controlling Film Properties in Microstructures on Single Grains of Titanium; A SDC, SECM and Imaging Ellipsometry Study. 54rd Annual Meeting of the International Society of Electrochemistry, Sao Pedro, Brazil (2003)
Hassel, A. W.: Filiformkorrosion auf AA2024-T3. 18. GFKORR Arbeitskreis “Korrosion und Korrosionschutz von Aluminium und Magnesium zugleich 11. GfKORR Arbeitskreis „Kontaktkorrosion”, Helgoland, Deutschland (2003)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Anodic Oxide Film on Shape Memory NiTi Alloy. 203rd Meeting of The Electrochemical Society, Paris, France (2003)
Hassel, A. W.; Akiyama, E.; Stratmann, M.: From Discrete to Single Impacts in Particle Induced Flow Corrosion. 203rd Meeting of The Electrochemical Society, Paris, Frankreich (2003)
Tareelap, N.; Hassel, A. W.; Stratmann, M.: In-Situ Study of Aluminium Repassivation by Using Scanning Droplet Cell Combined with Quartz Tip. 203rd Meeting of The Electrochemical Society, Paris, Frankreich (2003)
Tsuri, S.; Hassel, A. W.; Stratmann, M.: Effect of Chloride Ion Concentration on Electrochemical Behavior of Low Alloy Steels during Atmospheric Corrosion. 2003 Spring Meeting of the Japan Institute of Metals, Chiba, Japan (2003)
Hassel, A. W.; Akiyama, E.; Stratmann, M.: Towards the detection of single impacts in particle induced flow corrosion. COST F2 2nd Workshop „Local Flow Effects in Hydrodynamic Systems”, Aachen, Deutschland (2002)
Tsuri, S.; Hassel, A. W.; Stratmann, M.: The Effect of Wet/Dry Repetition on Reactivation/Repassivation Process during Atmospheric Corrosion of Low Alloy Steel. 2002 Fall Meeting of the Japan Institute of Metals, Osaka, Japan (2002)
Tsuri, S.; Hassel, A. W.; Stratmann, M.: Electrochemical Behavior of Low Alloy Steels during Atmospheric Corrosion. 2003 Spring Meeting of the Japan Institute of Metals, Chiba, Japan (2002)
Diesing, D.; Hassel, A. W.: Quantification and modification of trap distributations in anodic aluminium oxide films. 53rd Meeting of the International Society of Electrochemistry, Düsseldorf, Germany (2002)
Hassel, A. W.; Akiyama, E.; Stratmann, M.: Microscopic Aspects of Particle Induced Flow Corrosion. 53rd Meeting of the International Society of Electrochemistry, Düsseldorf, Deutschland (2002)
Tsuri, S.; Hassel, A. W.; Stratmann, M.: Electrochemical Studies of Atmospheric Corrosion for Low Alloyed Steels. 53rd Meeting of the International Society of Electrochemistry, Düsseldorf, Deutschland (2002)
Tsuri, S.; Hassel, A. W.; Stratmann, M.: Effect of Sulfate and Chloride Ions on Corrosion Potential and Corrosion Rate Transient during Atmospheric Corrosion of Low Alloy Steels. 15th International Corrosion Congress, Granada, Spanien (2002)
Hassel, A. W.; Mingers, A. M.; Stratmann, M.; Dinh, T. H.; Widdel, F.: Mechanismen der anaeroben Biokorrosion des Eisens. 22. Sitzung des DECHEMA Arbeitsausschuss „Mikrobielle Materialzerstörung und Materialschutz” gemeinsam mit GfKORR Arbeitskreis „Mikrobiell beeinflusste Korrosion”, Frankfurt, Germany (2002)
Diesing, D.; Hassel, A. W.: Transient states in the breakdown of thin oxide films. Jahrestagung der Deutschen Physikalischen Gesellschaft, Regensburg, Germany (2002)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…