Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Roters, F.; Raabe, D.: Mesoscale modeling of dislocation mechanisms and the effect of nano-sized carbide morphology on the strengthening of advanced lightweight high-Mn steels. MMM2014, 7th International Conference on Multiscale Materials Modeling
, Berkeley, CA, USA (2014)
Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Raabe, D.: Alloy design of advanced lightweight high-Mn steels by combined TEM and discrete dislocation dynamics simulations. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Welsch, E. D.; Haghighat, S. M. H.; Gutiérrez-Urrutia, I.; Raabe, D.: Investigation of nano-sized kappa carbide distribution in advanced austenitic lightweight high-Mn steels by coupled TEM and DDD simulations: Strengthening and dislocation-based mechanisms. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Gutiérrez-Urrutia, I.; Raabe, D.: Exploring nanotwinned structures in advanced high-Mn steels. International Symposium on Plasticity 2014, Freeport, BS, USA (2014)
Gutiérrez-Urrutia, I.; Raabe, D.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique to characterize deformation structures in the SEM. Euromat 2013, Sevilla, Spain (2013)
Gutiérrez-Urrutia, I.; Raabe, D.: High performance lightweight steels. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, Hawai, USA (2013)
Gutiérrez-Urrutia, I.; Seol, J.-B.; Marceau, R. K. W.; Choi, P.; Raabe, D.: Multi-scale characterization of advanced structural steels: from the micro to the atomic-scale. 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8), Waikoloa, Hawai, USA (2013)
Chakkedah, A.; Chen, Z.; Boehlert, C.; Gutiérrez-Urrutia, I.; Llorca, J.; Boehlen, J.; Yi, S.; Letzig, D.; Pérez-Prado, M. T.: The effect of neodymium on the deformation behavior of extruded Mg-1Mn (wt%). International Workshop on Processing-Microstructure-Mechanical Property of Magnesium Alloys, Madrid, Spain (2013)
Srinivasa Rao, B.; Zhilyaev, A. P.; Gutiérrez-Urrutia, I.; Pérez-Prado, M. T.: Stabilization of an HCP-Li phase at room temperature in a Mg-Li alloy by High Pressure Torsion. International Workshop on Processing-Microstructure-Mechanical Property of Magnesium Alloys, Madrid, Spain (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.