Vogel, A.; Vogel, D.; Auinger, M.; Rohwerder, M.: An experimental set-up for in-situ thermogravimetry in low pressure environments. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Vogel, D.; Borodin, S.; Auinger, M.; Keil, P.; Rohwerder, M.: Near Ambient Pressure XPS studies on the oxide formation on Fe–2Mn during thermal treatment. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Auinger, M.; Vogel, A.; Praig, V. G.; Holzweber, M.; Danninger, H.; Rohwerder, M.: Internal Oxidation in Iron Bases Model alloys and Oxygen Isotope Distribution at High Temperatures. 8th International Symposium on High-Temperature Corrosion and Protection of Materials, Les Embiez, France (2012)
Auinger, M.; Vogel, A.; Vogel, D.; Praig, V. G.; Danninger, H.; Rohwerder, M.: Decarburisation in Steels at Elevated Temperatures - Experimental Observations by in-situ Mass Spectrometry and Theoretical Calculations. 8th International Symposium on High-Temperature Corrosion and Protection of Materials, Les Embiez, France (2012)
Auinger, M.; Swaminathan, S.; Rohwerder, M.: The Influence of Oxide Formation on the Diffusion Properties in Iron Alloys - The Thermogravimetric Behaviour in Early Stages of Oxidation. Gordon-Kenan Research Seminar on High Temperature Corrosion and Gordon-Research Conference on High Temperature Corrosion, New London, NH, USA (2011)
Burk, S.; Auinger, M.; Depka, T.; Gorr, B.; Eggeler, G.; Christ, H.-J.: Mechanisms of Internal Oxidation of Mo–Si–B Alloys at 1100°C - Experimental Verification and Simulation. Gordon Research Conference on High Temperature Corrosion, Colby-Sawyer College, New London, NH, USA (2011)
Auinger, M.; Rohwerder, M.: Thermodynamic Simulations of Gas-Nitriding in Iron-Chromium and Iron-Silicon Alloys. European Conference “Nitriding and Nitrocarburising”, Aachen, Germany (2010)
Auinger, M.; Rohwerder, M.: Numerical Simulation of High Temperature Corrosion Processes in Mn, Cr, Si, Al–Steels. Thermodynamics 2009, Imperial College London, U. K. (2009)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation at High Temperatures in Alloyed Steel Samples. Electrochem09 and 50th Corrosion Science Symposium, Manchester, UK (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…