Hickel, T.: Computational Phase Studies: Deriving free energies and phase transitions from first principles. MRS 2009 Fall Meeting, Boston, MA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Modeling of electronic and optical properties of GaN/AlN quantum dots by using the k.p-method. Bremen DFG Forschergruppe: Workshop in Riezlern, Riezlern, Austria (2008)
Dick, A.; Hickel, T.; Neugebauer, J.: First Principles Predictions of Mechanical Properties of FeMn-Alloys. Workshop des SFB761, Beilngries, Germany (2008)
Aydin, U.; Ismer, L.; Hickel, T.: Ab initio study of trends in the thermodynamic and kinetic properties of H in 3d transition metals. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Effect of strain and polarization on the electronic properties of 2-, 1- and 0-dimensional semiconductor nanostructures. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles: The (pre-)martensitic transition by phonons and magnons, Soft mode phase transformation by phonon couplings. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: An efficient thermodynamic integration scheme. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. XXI Congress of the International Union of Crystallography, Osaka, Japan (2008)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Influence of vacancies and explicit anharmonicity. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Ismer, L.; Friák, M.; Hickel, T.; Neugebauer, J.: Effect of interstitial carbon on the magnetic structure of fcc iron: Towards an ab-initio simulation of austenitic steels. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles: The martensitic transition & magnetism, The pre-martensitic transition & soft modes, Off-stoichiometry & the stability of the phases. Workshop on magnetic shape memory alloys, Bremen, Germany (2008)
Hickel, T.: Ab initio determination of free energies and phase diagrams. MPIE Inter-Departmental Tutorial Day(s) 2008, MPIE, Duesseldorf, Germany (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…