He, D.; Zhu, J.; Zaefferer, S.; Raabe, D.: Effect of retained beta layer on slip transmission in Ti–6Al–2Zr–1Mo–1V near alpha titanium alloy during tensile deformation at room temperature. Materials and Design 56, pp. 937 - 942 (2014)
Ram, F.; Zaefferer, S.; Raabe, D.: Kikuchi bandlet method for the accurate deconvolution and localization of Kikuchi bands in Kikuchi diffraction patterns. Journal of Applied Crystallography 47, pp. 264 - 275 (2014)
Gutiérrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM. JOM: the Journal of the Minerals, Metals & Materials Society (TMS) 65 (9), pp. 1229 - 1236 (2013)
Davut, K.; Zaefferer, S.: Improving the Reliability of EBSD-based Texture Analysis by a New Large Area Mapping Technique. Materials Science Forum 702-703, pp. 566 - 569 (2012)
Davut, K.; Zaefferer, S.: The effect of size and shape of austenite grains on the mechanical properties of a low-alloyed TRIP steel. Steel Research International 83 (6), pp. 584 - 589 (2012)
He, D.; Zaefferer, S.; Zhu, J. C.; Lai, Z. L.: Three-Dimensional Morphological and Crystallographic Investigation of Lamellar Alpha and Retained Beta in a Near Alpha Titanium Alloy by Combination of Focused Ion Beam and Electron Backscattering Diffraction. Steel Research International 83, pp. 496 - 500 (2012)
He, D.; Zhu, J. C.; Zaefferer, S.; Raabe, D.; Liu, Y.; Lai, Z. L.; Yang, X. W.: Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during beta -> alpha phase transformation in a near alpha titanium alloy. Materials Science and Engineering A 549, pp. 20 - 29 (2012)
Yi, S. B.; Rayas, L.; Sandlöbes, S.; Zaefferer, S.; Letzig, D.; Kainer, K.: Influence of Rare Earth Addition on Texture Development during Static Recrystallization and Mechanical Behaviour of Magnesium Alloy Sheets. Materials Science Forum 702-703, pp. 651 - 654 (2012)
Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.; Rohrer, G. S.; Rollett, A. D.; Winning, M.: Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials 13, pp. 237 - 244 (2011)
Sandlöbes, S.; Zaefferer, S.; Schestakow, I.; Yi, S.; Gonzales-Martinez, R.: On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Materialia 59 (2), pp. 429 - 439 (2011)
Davut, K.; Zaefferer, S.: Statistical Reliability of Phase Fraction Determination Based on Electron Backscatter Diffraction (EBSD) Investigations on the Example of an Al-TRIP Steel. Metallurgical and Materials Transactions A 41 (9), pp. 2187 - 2196 (2010)
Gutierrez-Urrutia, I.; del Valle, J.; Zaefferer, S.; Raabe, D.: Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests. Journal of Materials Science 45, pp. 6604 - 6610 (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…