He, J.; Cao, L.; Makineni, S. K.; Gault, B.; Eggeler, G. F.: Effect of interface dislocations on mass flow during high temperature and low stress creep of single crystal Ni-base superalloys. Scripta Materialia 191, pp. 23 - 28 (2021)
He, J.; Scholz, F.; Horst, O. M.; Thome, P.; Frenzel, J.; Eggeler, G. F.; Gault, B.: Corrigendum to ‘On the Re segregation at the low angle grain boundary in a single crystal Ni-base superalloy’ Scripta Materialia Volume 185, August 2020, Pages 88-93 (Scripta Materialia (2020) 185 (88–93), (S1359646220302475), (10.1016/j.scriptamat.2020.03.063)). Scripta Materialia 187, p. 309 (2020)
Isik, M. I.; Kostka, A.; Eggeler, G.: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels. Acta Materialia 81, pp. 230 - 240 (2014)
Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Effect of climb on dislocation mechanisms and creep rates in γ’-strengthened Ni base superalloy single crystals: A discrete dislocation dynamics study. Acta Materialia 61 (10), pp. 3709 - 3723 (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…