Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Clemens, H. J.; Schmoelzer, T.; Schloffer, M.; Schwaighofer, E.; Mayer, S.; Dehm, G.: Physical metallurgy and properties of β-solidifying TiAl based alloys. In: Materials Research Society symposium proceedings, Vol. 1295, pp. 95 - 100. Materials Research Society Symposium N – Intermetallic-Based Alloys for Structural and Functional Applications , San Francisco, CA, USA, April 25, 2011 - April 29, 2011. Materials Research Society: MRS, Leoben, Austria (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
ZnO is a wide band gap semiconductor which is of interest to such diverse areas of application as passivation layers on steel surfaces, catalysis, corrosion, adhesion, gas sensing, and micro- or optoelectronics. Understanding the surface structure and stoichiometry is of high practical interest and essential for any of the mentioned applications…
We apply our novel potentiostat approach to study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on the gained insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…