Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme. Modelling and Simulation in Materials Science and Engineering 23 (4), 045005 (2015)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering 18 (1), 015006, pp. 015006-1 - 015006-21 (2010)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. International Journal of Materials Research 100 (4), pp. 500 - 509 (2009)
Tjahjanto, D. D.; Turteltaub, S.; Suiker, A.S.J.; van der Zwaag, S.: A Micromechanical Study of the Deformation Behavior of TRIP-Assisted Multiphase Steels as a Function of the Microstructural Parameters of the Retained Austenite. Advanced Engineering Materials 11 (3), pp. 153 - 157 (2009)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjanto, D. D.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA, May 17, 2011 - May 19, 2011. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, (2012)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Texture Prediction from a Novel Grain Cluster-Based Homogenization Scheme. 12th International ESAFORM Conference on Material Forming, Enschede, The Netherlands. International Journal of Material Forming 2 (1/August 2009), p. 523 - 523 (2009)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Relaxed Grain Cluster (RGC) Homogenization Scheme. 12th International ESAFORM Conference on Material Forming, Enschede [Netherlands], 2009. International Journal of Material Forming 2 (1/August 2009), pp. 939 - 942 (2009)
Roters, F.; Eisenlohr, P.; Tjahjanto, D. D.; Kords, C.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using FEM and FFT based numerical solvers. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Roters, F.; Eisenlohr, P.; Tjahjanto, D. D.; Kords, C.; Raabe, D.: A modular crystal plasticity framework applicable from component to single grain scale. IUTAM Symposium Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA (2011)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Prediction of material response in cup drawing using relaxed grain cluster (RGC) homogenization scheme. International Conference on Numerical Methods in Industrial Forming Process (NUMIFORM) 2010, Pohang, South Korea (2010)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Computational method for simulating polycrystalline material response using relaxed grain cluster model. European Congress on Computational Mechanics (ECCM) 2010, Paris, France (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.