Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Folger, A.; Wisnet, A.; Scheu, C.: Defects in as-grown vs. annealed rutile titania nanowires and their effect on properties. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. The 16th European Microscopy Congress (EMC 2016), Lyon, France (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting of epitaxial Al thin films on sapphire studied by electron microscopy. Materials Research Society Fall Meeting & Exhibition 2016 (MRS Fall 2016), Boston, MA, USA (2016)
Scheu, C.: New insights into HTPEM fuel cells using electron microscopy techniques. THERMEC’2016: 9th International Conference on Processing & Manufacturing of Advanced Materials, Graz, Austria (2016)
Scheu, C.: Atomic arrangement and defects in Nb3O7(OH) and TiO2 nanoarrays and their effect on functional properties. Talk at Institut für Anorganische und Analytische Chemie, Universität Freiburg, Freiburg, Germany (2016)
Scheu, C.: Dewetting of epitaxial Al thin films on (0001) single crystalline sapphire substrates. Materials Science & Technology (MS&T), Columbus, OH, USA (2015)
Scheu, C.: Challenges in nanostructured photovoltaic devices. IAMNano 2015 - International Workshop on Advanced and In‐situ Microscopies of Functional Nanomaterials and Devices, Hamburg, Germany (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopic insights into degradation processes in high temperature polymer electrolyte membrane fuel cells. Scandem 2015, Jyväskylä, Finland (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. Understanding Grain Boundary Migration: Theory Meets Experiment, Günzburg/Donau, Germany (2015)
Scheu, C.: Structural and Functional Properties of Nb3O7(OH) and TiO2 Nanoarrays. Max Planck POSTECH/KOREA Symposium on Frontiers in Materials Science, Pohang, Korea (2015)
Folger, A.; Scheu, C.: Detailed electron microscopy study on the structural transformation inside rutile TiO2 nanowires upon annealing. 2nd International Workshop on TEM Spectroscopy in Material Science, Uppsala, Sweden (2015)
Scheu, C.: Dewetting of Al films on alumina. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (2015)
Frank, A.; Folger, A.; Betzler, S. B.; Wochnik, A. S.; Wisnet, A.; Scheu, C.: Low-cost synthesis of semiconducting nanostructures used in energy applications. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Scheu, C.: Optimization and Characterization of Nanostructured Materials used in Energy Generating Devices. Talk at Institut für Metallkunde und Metallphysik RWTH Aachen University, Aachen, Germany (2015)
Scheu, C.: Interface challenges in nanostructured energy generating devices. Energy Materials Nanotechnology (EMN) Photovoltaics Meeting, Orlando, FL, USA (2015)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Funding ended January 2023 This group was concerned with the 3D mapping of hydrogen at near-atomic scale in metallic alloys with the aim to better understand hydrogen storage materials and hydrogen embrittlement.
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
Hydrogen at crack tips can embrittle steels and lead to catastrophic material failure. In this project we develop a continuum model for the formation of hydride zones in the tensile regions of a crack tip. It changes the fracture properties of static and propagating fractures.
In this project, we directly image and characterize solute hydrogen and hydride by use of atom probe tomography combined with electron microscopy, with the aim to investigate H interaction with different phases and lattice defects (such as grain boundaries, dislocation, etc.) in a set of specimens of commercially pure Ti, model and commercial…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.