Biedermann, P. U.; Blumenau, A. T.: Ab-Initio Calculation of the Standard Hydrogen Electrode Potential and Application to the Mechanism of the Oxygen Reduction. Workshop on Converging Theoretical and Experimental Approaches to Corrosion, MPIE, Düsseldorf, Germany (2007)
Blumenau, A. T.; Biedermann, P. U.; Torres, E.: Modelling adhesion and delamination at oxide/polymer interfaces. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Biedermann, P. U.; Torres, E.; Blumenau, A. T.: Oxygen Reduction at Thiol/Au(111)SAMs, Atomistic Modelling and Experiment. 212th ECS Meeting, Washington, D.C., USA (2007)
Özcan, Ö.; Thissen, P.; Diesing, D.; Blumenau, A. T.; Grundmeier, G.: A Monte Carlo - DFT Study: Adsorption of organosilanes on polar ZnO(0001) surfaces. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO (0001) surfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Blumenau, A. T.: Extended defects in GaN from an atomistic modelling point view. OPTO 2007, Integrated Optoelectronic Devices, San Jose, California, USA (2007)
Biederrmann, U. P.; Torres, E.; Blumenau, A. T.: Degradation of Alkanethiol/Au(111) Self-Assembled Monolayers During Oxygen Reduction. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld, Germany (2006)
Torres, E.; Biederrmann, U. P.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. A DFT study of Alkanethiol adsorption sites on Au(111) surfaces, Clausthal, Germany (2006)
Lehtinen, P.; Grundmeier, G.; Blumenau, A. T.: Ab initio studies of molecular adsorption on g-AlOOH (001)-surface. 1. Harzer Ab initio Workshop, Clausthal, Germany (2006)
Eberlein, T. A. G.; Jones, R.; Blumenau, A. T.; Öberg, S.; Briddon, P. R.: Movement and pinning of dislocations in SiC. EDS 2006, Halle, Germany (2006)
Fujita, N.; Blumenau, A. T.; Jones, R.; Öberg, S.; Briddon, P. R.: Dislocations in single crystal CVD diamond and their interaction with intrinsic point defects. EDS 2006, Halle, Germany (2006)
Fujita, N.; Blumenau, A. T.; Jones, R.; Öberg, S.; Briddon, P. R.: A theoretical investigation of transition metal defects trapped at dislocations in silicon. EDS 2006, Halle, Germany (2006)
Lehtinen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of water molecule on gamma-AlOOH (001)-surface. Internationaler Workshop auf Schloss Ringberg, Schloss Ringberg, Germany (2006)
Blumenau, A. T.; Eberlein, T. A. G.; Jones, R.; Frauenheim, T.: The Modelling of Dislocations in Semiconductor Crystals. EUROMAT 2005, Prague, Czech Republic (2005)
Fujita, N.; Blumenau, A. T.; Jones, R.; Öberg, S.; Briddon, P. R.: <100> dislocations in single crystal CVD diamond - Theoretical aspects. De Beers Diamond conference, Oxford, UK (2005)
Blumenau, A. T.; Eberlein, T. A. G.; Jones, R.; Öberg, S.; Frauenheim, T.; Briddon, P. R.: The effect of charge on Basal dislocations in silicon carbide. EDS 2004, Chernogolovka, Russia (2004)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.