Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Mesoscale modelling of the influence of loading conditions on the dislocation mobility and creep process in single crystal Ni base superalloys. KTH Stockholm-Sweden, Stockholm, Sweden (2014)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Investigations to understand the mechanisms during electropolishing of NiTi. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Electropolishing of NiTi - Insight its mechanism. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufac-turing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufacturing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Luo, W.: Mechanical properties of the cubic and hexagonal NbCo2 Laves phases studied by micromechanical testing. Dissertation, Ruhr-Universität Bochum (2019)
Wu , X.: Elementary deformation processes during low temperature and high stress creep of Ni-base single crystal superalloys. Dissertation, Ruhr-University Bochum, Bochum, Germany (2016)
Aghajani, A.: Evolution of microstructure during long-term creep of a tempered martensite ferritic steel. Dissertation, Ruhr-University Bochum, Bochum (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
Recently developed dual-phase high entropy alloys (HEAs) exhibit both an increase in strength and ductility upon grain refinement, overcoming the strength-ductility trade-off in conventional alloys [1]. Metastability engineering through compositional tuning in non-equimolar Fe-Mn-Co-Cr HEAs enabled the design of a dual-phase alloy composed of…
Despite the immanent advantages of metals and alloys processed by additive manufacturing (e.g. design freedom for complex geometry) and unexpected merits (e.g. superior mechanical performance) of AM processes, there are several remaining issues that need to be addressed in order to practically apply AM alloys to various industries. One of the most important issues is the mechanical behavior of AM alloys under hydrogen environments, since it is easily encountered in the industrial fields and has generally detrimental effects on metals and alloys.
To design novel alloys with tailored properties and microstructure, two materials science approaches have proven immensely successful: Firstly, thermodynamic and kinetic descriptions for tailoring and processing alloys to achieve a desired microstructure. Secondly, crystal defect manipulation to control strength, formability and corrosion…
Funding ended January 2023 This group was concerned with the 3D mapping of hydrogen at near-atomic scale in metallic alloys with the aim to better understand hydrogen storage materials and hydrogen embrittlement.