Lyrio, M. S.; Oliveira, H.R.; Sandim, M. J. R.; Devulapalli, V.; Sandim, H. R. Z.: Effect of the scanning strategy on texture of grain-oriented electrical steel (Fe-4wt%Si) processed via laser powder-bed fusion and subsequent thermomechanical processing. Materials Characterization 221, 114789 (2025)
Lyrio, M. S.; Shoji Aota, L.; Sandim, M. J. R.; Sandim, H. R. Z.: Additive manufacturing of Fe-3.5 wt.-%Si electrical steel via laser powder bed fusion and subsequent thermomechanical processing. Journal of Materials Science 59 (9), pp. 4019 - 4038 (2024)
Rodrigues Souza Filho, I.; Knabl, W.; Kestler, H.; Ricardo Zschommler Sandim, H.: Strain-rate effects on the recrystallization of molybdenum-based MZ17 alloy. International Journal of Refractory Metals and Hard Materials 112, 106124 (2023)
Aota, L. S.; Souza Filho, I. R.; Roscher, M.; Ponge, D.; Sandim, H. R. Z.: Strain hardening engineering via grain size control in laser powder-bed fusion. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 838, 142773 (2022)
Pinto, F. C.; Aota, L. S.; Souza Filho, I. R.; Raabe, D.; Sandim, H. R. Z.: Recrystallization in non-conventional microstructures of 316L stainless steel produced via laser powder-bed fusion: effect of particle coarsening kinetics. Journal of Materials Science 57, pp. 9576 - 9598 (2022)
Aota, L. S.; Bajaj, P.; Sandim, H. R. Z.; Jägle, E. A.: Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders. Materials 13 (18), 3922 (2020)
Souza Filho, I. R.; Sandim, M. J. R.; Ponge, D.; Sandim, H. R. Z.; Raabe, D.: Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 754, pp. 636 - 649 (2019)
Almeida Junior, D. R.; Zilnyk, K. D.; Raabe, D.; Sandim, H. R. Z.: Reconstructing the austenite parent microstructure of martensitic steels: A case study for reduced-activation Eurofer steels. Journal of Nuclear Materials 516, pp. 185 - 193 (2019)
Oliveira, V. B.; Sandim, H. R. Z.; Raabe, D.: Abnormal grain growth in Eurofer-97 steel in the ferrite phase field. Journal of Nuclear Materials 485, pp. 23 - 38 (2017)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.