Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Iron Substrates Borided with Ni2B Particles by Laser-Induced Surface-Alloying. Zeitschrift für Metallkunde 90 (11), pp. 920 - 929 (1999)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Rashkova, B.; Cohen, S. S.; Goren-Muginstein, G.; Bamberger, M. S.; Dehm, G.: Analytical and high resolution TEM analysis of precipitation hardening in Mg–Zn–Sn alloys. In: Proceedings of the 7th Multinational Congress on Microscopy 2005, pp. 183 - 184 (Eds. Ceh, M.; Drazic, G.; Fidler, S.). 7th Multinational Congress on Microscopy 2005, Portorož, Slovenia, June 26, 2005 - June 30, 2005. (2005)
Cohen, S. S.; Goren-Muginstein, G. R.; Avraham, S.; Dehm, G.; Bamberger, M. S.: Phase formation, precipitation and strengthening mechanisims in Mg–Zn–Sn and Mg–Zn–Sn–Ca alloys. In: Symposium on Magnesium Technology 2004, pp. 301 - 305. TMS Annual Meeting, Charlotte, NC, USA, March 14, 2004 - March 18, 2004. (2004)
Dehm, G.; Bamberger, M. S.: Microstructure and Properties of Ferrous Substrates Laser-Alloyed with Boride Particles. In: Proc. of the European Conference on Laser Treatment of Materials, pp. 221 - 226 (Ed. Mordike, B. L.). ECLAT 98, Hannover, Germany, September 22, 1998 - September 23, 1998. Werkstoff-Informationsgesellschaft mbH, Frankfurt, Germany (1998)
Medres, B.; Shepeleva, L.; Ryk, G.; Dehm, G.; Bamberger, M. S.; Kaplan, W. D.: The Pecularities of Steels Laser Treatment with CrB2 and Ni2B Powders. In: ICALEO '98: laser materials processing conference: proceedings, Vol. 2, pp. D51 - D57. International Congress on Applications of Lasers and Electro-Optics’98, Orlando, FL, USA. (1998)
Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe. In: Laser Materials Processing, Vol. 83a, pp. 128 - 137. International Congress on Applications of Lasers and Electro-Optics’97, San Diego, CA, USA, 1997. (1997)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.