Wilson, B. P.; Fink, N.; Grundmeier, G.: Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 2: Nucleation, growth and properties of inorganic-organic ultra-thin hybrid films. Electrochimica Acta 51 (15), pp. 3066 - 3075 (2006)
Fink, N.; Wilson, B. P.; Grundmeier, G.: Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 1: Composition and reactivity of native oxides on ZnAl(0.05%)-coatings. Electrochimica Acta 51 (14), pp. 2956 - 2963 (2006)
Fink, N.; Wilson, B.; Stromberg, C.; Grundmeier, G.: Fundamental Investigations of Different Film Formation Kinetics of Amorphous Conversion Layers on Zinc Coated Steel due to Grain Orientation. 208th Meeting of the Electrochemical Society, Los Angeles, CA, USA (2005)
Fink, N.; Wilson, B.; Grundmeier, G.: Fundamental investigations of interfacial processes during the formation of amorphous conversion layers on zinc coated steel. 55th Annual Meeting of the International Society of Electrochemistry (ISE), Thessaloniki, Greece (2004)
Wilson, B.; Fink, N.; Dornbusch, M.; Grundmeier, G.: Interfacial Reactions During the Formation of Amorphous Anti-Corrosion Coatings on Zinc Coated Steel. Gordon Research Conference on Aqueous Corrosion, Colby-Sawyer College, New London, NH, USA (2004)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.