Huemer, K.; Karsten, S.; Balusundaram, K.; Raabe, D.; Hild, S.; Fabritius, H.: Structural organization and mineral distribution in load-bearing exoskeleton parts of the edible crab Cancer pagurus. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Influence of Structural Organization and Mineral Distribution on the Local Mechanical Properties of Mineralized Cuticle from the Crab Cancer pagurus. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Fabritius, H.; Hild, S.; Raabe, D.: Leg joints of the lobster Homarus americanus as an example of cuticle modification for specific functions: Variations in structure, composition and properties. MRS Fall Meeting 2008, Boston, MA, USA (2008)
Struss, J.; Znidarsic, N.; Ziegler, A.; Hild, S.: Microscopic anatomy and mineral composition of cuticle in amphibious isopods Ligia italica and Titanethes albus (Crustacea:Isopoda). European Microscopy Congeress EMC 2008, Aachen, Germany (2008)
Ziegler, A.; Hild, S.: Distribution and function of amorphous CaCO3 and Calcite within the tergite cuticle of terrestrial isopods (Crustacea). European Microscopy Congeress EMC 2008, Aachen, Germany (2008)
Hild, S.; Ziegler, A.: The isopod cuticle: A model to study formation and function of amorphous calcium carbonate in calcified tissues. European Geosciences Union General Assembly, Vienna, Austria (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.