Gross, M.; Krüger, T.; Varnik, F.: Rheology of dense suspensions of elastic capsules: Normal stresses, yield stress, jamming and confinement effects. Soft Matter 10 (24), pp. 4360 - 4372 (2014)
Krüger, T.; Gross, M.; Raabe, D.; Varnik, F.: Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9 (37), pp. 9008 - 9015 (2013)
Krüger, T.; Varnik, F.; Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications 61 (12), pp. 3485 - 3505 (2011)
Krüger, T.; Varnik, F.; Raabe, D.: Particle stress in suspensions of soft objects. Philosophical Transactions of the Royal Society A 369, pp. 2414 - 2421 (2011)
Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Krüger, T.: Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear. Springer Spektrum, Heidelberg (2012), 165 pp.
Schiffels, P.; Amkreutz, M.; Blumenau, A. T.; Krüger, T.; Schneider, B.; Frauenheim, T.; Hennemann, O.-D.: Modeling Fundamental Aspects of the Surface Chemistry of Oxides and their Interactions with Coupling Agents. In: Adhesion: Current Research and Applications, pp. 17 - 32 (Ed. Possart, W.). Wiley – VCH, Weinheim (2005)
Krüger, T.: Microscopic behavior of dense red blood cell suspensions in shear flow: A hybrid lattice Boltzmann finite element simulation study. Discrete Simulation of Fluid Dynamics 2011, Fargo, ND, USA (2011)
Krüger, T.: Particle-resolved simulation of blood in simple shear flow: Shear-thinning behavior and its microscopic origin(s). Institut für Festkörperforschung, FZ Jülich, Jülich, Germany (2011)
Krüger, T.: Hybrid LB-FEM modeling of dense suspensions of deformable particles under shear. SFB TR6 Seminar, Institut für Theoretische Physik II, HHU Düsseldorf, Germany (2011)
Krüger, T.: Mesoscopic modeling of red blood cell dynamics. Oberseminar: Theorie komplexer Systeme WS 2010, Institut für Theoretische Physik, Universität Heidelberg, Germany (2010)
Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…