Hassel, A. W.; Diesing, D.: Breakdown of ultrathin anodic valve metal oxide films in metal-insulator-metal-contacts compared with metal-insulator-electrolyte contacts. Thin Solid Films 414, pp. 296 - 303 (2002)
Hassel, A. W.; Diesing, D.: Trapping of transient processes in aluminium oxide thin films in a voltage pulse experiment. Electrochemistry Communications 4, pp. 1 - 4 (2002)
Hassel, A. W.; van der Kloet, J.; Schmidt, W.; Stratmann, M.: In-situ SKP Investigation and ToF-SIMS Analysis of Filiform Corrosion on Aluminium Alloy 2024-T3. Proceed. Japan Soc. CoRR. Engineer. Mater. Environments 48, pp. 61 - 69 (2001)
Mozalev, A.; Poznyak, A.; Mozaleva, I.; Hassel, A. W.: The voltage-time behaviour for porous anodizing of aluminium in a fluoride-containing oxalic acid electrolyte. Electrochem. Commun. 3, pp. 299 - 305 (2001)
Seo, M.; Aihara, M.; Hassel, A. W.: Cathodic Decomposition and Anodic Dissolution and Changes in Surface Morphology of n-type InP in HCl. J. Electrochem. Soc. 148, pp. B400 - B404 (2001)
Seo, M.; Aihara, M.; Hassel, A. W.: Cathodic Decomposition and Changes in Surface Morphology of InP in HCl. Electrochem. Soc. Proc. PV 00-25, pp. 576 - 585 (2000)
Diesing, D.; Hassel, A. W.; Lohrengel, M. M.: Aluminium Oxide Tunnel Junctions: Influence of Preparation Technique, Sample Geometry and Oxide Thickness. Thin Solid Films 342, pp. 282 - 290 (1999)
Hassel, A. W.; Seo, M.: Localised Investigation of Coarse Grain Gold with the Scanning Droplet Cell and by the Laue Method. Electrochim. Acta 44, pp. 3769 - 3777 (1999)
Hassel, A. W.; Lohrengel, M. M.: The Scanning Droplet Cell and its Application to Structured Nanometer Oxide Films on Aluminium. Electrochimica Acta 42, pp. 3327 - 3333 (1997)
Hassel, A. W.; Lohrengel, M. M.; Schultze, J. W.: Ultradünne Aluminiumoxidschichten: Untersuchung elektronischer und ionischer Transportprozesse. Metalloberfläche 50, pp. 19 - 22 (1996)
Hassel, A. W.; Lohrengel, M. M.; Schultze, J. W.: Ultradünne Aluminiumoxidschichten: Untersuchung elektronischer und ionischer Transportprozesse. Metalloberfläche 50, pp. 19 - 22 (1996)
Hassel, A. W.; Lohrengel, M. M.: Preparation and Properties of Ultra Thin Anodic Valve Metal Oxide Films. Materials Science Forum 185-188, pp. 581 - 590 (1995)
Hassel, A. W.; Lohrengel, M. M.; Rüße, S.; Schultze, J. W.: On the Mechanism of Ion Transport in Thin (1-100 nm) Oxide Films on Aluminum and Tantalum. Bulletin of the Chemists and Technologists of Macedonia 13, pp. 49 - 54 (1994)
Hassel, A. W.; Bonk, S.; Wicinski, M.; Stratmann, M.; Ogle, K.; Philips-Falcey, N.; Ostwald, C.; Janssen, S.; Stellnberger, K.-H.; Konrath, P.: Passive/active transistions in cyclic corrosion tests. Office for Official Publications of the European Communities, Luxembourg, Luxembourg (2007)
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…