Harzer, T. P.; Duarte, M. J.; Dehm, G.: In-situ TEM isothermal annealing of nanocrystalline supersaturated Cu–Cr thin film alloys. 80th Annual Conference of the DPG and DPG Spring Meeting, Regensburg, Germany (2016)
Jaya, B. N.; Köhler, M.; Schnabel, V.; Raabe, D.; Schneider, J. M.; Kirchlechner, C.; Dehm, G.: Micro-scale fracture behavior of Co based metallic glass thin films. 2016 TMS Annual Meeting and Exhibition Symposium: In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques, Nashville, TN, USA (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. The 16th European Microscopy Congress (EMC 2016), Lyon, France (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting of epitaxial Al thin films on sapphire studied by electron microscopy. Materials Research Society Fall Meeting & Exhibition 2016 (MRS Fall 2016), Boston, MA, USA (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Dehm, G.: Mikromechanik: lokale Einblicke in die mechanischen Eigenschaften von Materialien. Eröffnung des Christian Doppler Labors für
Lebensdauer und Zuverlässigkeit von Grenzflächen in komplexen Mehrlagenstrukturen der Elektronik „RELAB“, Vienna, Austria (2015)
Dehm, G.: New insights into the mechanical behavior of interface controlled metals. Colloquium Materials Modelling, Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF), Universität Stuttgart , Stuttgart, Germany (2015)
Dehm, G.; Imrich, P. J.; Malyar, N.; Kirchlechner, C.: Differences in deformation behavior of bicrystalline Cu micropillars containing different grain boundaries. MS&T 2015 (Materials Science and Technology) meeting, symposium entitled "Deformation and Transitions at Grain Boundaries", Columbus, OH, USA (2015)
Dehm, G.; Zhang, Z.; Völker, B.: Structure and strength of metal-ceramic interfaces: New insights by Cs corrected TEM and advances in miniaturized mechanical testing. MS&T 2015 (Materials Science and Technology) meeting, Symposium entitled "Structures and Properties of Grain Boundaries: Towards an atomic-scale understanding of ceramics", Columbus, OH, USA (2015)
Dehm, G.; Harzer, T. P.; Völker, B.; Imrich, P. J.; Zhang, Z.: Towards New Insights on Interface Controlled Materials by Advanced Electron Microscopy. Frontiers of Electron Microscopy in Materials Science Meeting (FEMMS 2015), Lake Tahoe, CA, USA (2015)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.