Hassel, A. W.; Lill, K. A.; Rablbauer, R.; Stratmann, M.: Corrosion and passivity of FeAlCr light weight steels. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Isik-Uppenkamp, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe Microscopy for characterisation of iron mobility at buried interfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Hassel, A. W.; Lill, K. A.; Stratmann, M.: Microelectrochemical Investigations of the Corrosion Behaviour of Ferritic FeAlCr Steels. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan (2007)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Investigation of Erosion -Corrosion Phenomena with the Help of Single Impact Impingement Studies. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan (2007)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Studying Passive Materials under Erosion-Corrosion Conditions using Single Particle Impingement Experiments. 56rd Meeting of the International Society of Electrochemistry, Edingburgh, UK (2006)
Stratmann, M.: How do organic coatings protect metallic substrates against corrosion? New physical insight into the importance of electrified interface. TU Clausthal, Fakultätskolloquium, Clausthal-Zellerfeld, Germany (2006)
Stratmann, M.: Fundamental Research and Industrial Development: Synergy or Conflict? Perspectives of Research - Identification and Implementation of Research Topics by Organisations, Schloss Ringberg, Rottach-Egern, Germany (2006)
Rohwerder, M.; Stratmann, M.: Delamination of Polymer/metal Interfaces: On the Role of Electron Transfer Reactions at the Buried Interface. 209th Meeting of The Electrochemical Society, Denver, CO, USA (2006)
Stratmann, M.: Fundamental Research and Industrial Development: Synergy or Conflict? Conference "Perspectives of Research - Identification and Implementation of Research Topics by Organization", Schloss Ringberg, Kreuth, Germany (2006)
Hassel, A. W.; Smith, A. J.; Stratmann, M.: Schnelle Transientenmessungen zur Detektion von Einzelpartikeltreffern. Bunsenkolloquium „Elektrochemie von tiefsten zu höchsten Temperaturen und von kleinsten zu größten Strömen“, Dresden, Germany (2005)
Kawakita, J.; Hassel, A. W.; Stratmann, M.: High Voltage Anodisation of a NiTi shape memory alloy. 208th Meeting of The Electrochemical Society, Los Angeles, CA,USA (2005)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.