Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Simulations of the Oxidation Processes in Polycrystalline Metallic Alloys. International Workshop “Grain boundary diffusion, stresses and segregation”, Moscow, Russia (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Cluster6 (Durability) Meeting, Velsen-Noord, The Netherlands (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Rohwerder, M.: Application of Conducting Polymers for the Corrosion Protection of Iron and Zinc. Advances in Corrosion Science for Lifetime Prediction and Sustainability: ISE 8th Spring Meeting, Columbus, Ohio, USA (2010)
Bashir, A.; Muglali, M. I.; Hamou, R. F.; Rohwerder, M.: SECPM Study: Influence of the Tip Material and Its Coating on the Accuracy of Potential Profiling Across Electrical Double Layer at Solid/Liquid Interface. 217th ECS Meeting, Vancouver, Canada (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Rohwerder, M.: Self-assembled monolayers in corrosion research. Chemisches Kolloquium, Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe-Universität, Frankfurt a. M., Germany (2010)
Rohwerder, M.: On the meaning of electrode potentials measured by Kelvin probe on coated and bare metal surfaces. 217th ECS Meeting, Vancouver, Canada (2010)
Senöz, C.; Rohwerder, M.: High Resolution Study of Hydrogen Permeation through Metals by Scanning Kelvin Probe Force Microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Rohwerder, M.: Intelligent corrosion protection by organic and by metal based nano composite coatings. CORROSION 2010, Henry B. Gonzalez Convention Center, San Antonio, TX, USA (2010)
Rohwerder, M.: Geplante Forschung zu Batterien im Rahmen des Zentrums für Elektrochemie (CES) und des Kompetenzverbundes Nord. Batterietag Münster, Münster, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. International Symposium “High Temperature Oxidation and Corrosion”, Zushi (Tokyo), Japan (2010)
Evers, S.; Rohwerder, M.: Localized measurement of Hydrogen amount in Metals by SKP. 6th International Conference on Diffusion in Solids and Liquids (DSL 2010), Paris, France (2010)
Rohwerder, M.: Intelligent corrosion protection by organic and by metal based nano composite coatings. Chemical Nanotechnology Talks X, Frankfurt a. M., Germany (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Delft, The Netherlands (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. International Workshops on Surface Modification for Chemical and Biochemical Sensing, Przegorzaly, Poland (2009)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.
The general success of large language models (LLM) raises the question if they could be applied to accelerate materials science research and to discover novel sustainable materials. Especially, interdisciplinary research fields including materials science benefit from the LLMs capability to construct a tokenized vector representation of a large…