Shelyug, A.; Pauna, H.; Springer, H.; Souza Filho, I. R.: Puppet Strings of Hydrogen Plasma Reduction of Iron Ores: The Impact of Process Parameters on Plasma Properties and Reduction Kinetics. Metallurgical and Materials Transactions B 56 (5), pp. 5232 - 5245 (2025)
Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Tanure, L.; Patterer, L.; Balakumar, S.; Fekete, M.; Mráz, S.; Karimi Aghda, S.; Hans, M.; Schneider, J. M.; Springer, H.: A novel concept for self-healing metallic structural materials: Internal soldering of damage using low melting eutectics. Materials & Design 252, 113821 (2025)
Gathmann, M.; Moisi, D.; Springer, H.: Coarsening mechanism of M2B-borides and their effect on the mechanical properties of high modulus steels. Materials & Design 247, 113411 (2024)
Gathmann, M.; Tönnißen, N.; Baron, C.; Kostka, A.; Steinbacher, M.; Springer, H.: Surface hardening of high modulus steels through carburizing and nitriding: First insights into microstructure property relationships. Surface and Coatings Technology 494 (Part 1), 131354 (2024)
Pauna, H.; Ernst, D.; Zarl, M.; Souza Filho, I. R.; Kulse, M.; Büyükuslu, Ö.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Schenk, J.et al.; Fabritius, T.; Raabe, D.: The Optical Spectra of Hydrogen Plasma Smelting Reduction of Iron Ore: Application and Requirements. Steel Research International 95 (8), 2400028 (2024)
Springer, H.; Souza Filho, I. R.; Choisez, L.; Zarl, M. A.; Quick, C.; Horn, A.; Schenk, J.: Iron ore wires as consumable electrodes for the hydrogen plasma smelting reduction in future green steel production. Sustainable Materials and Technologies 39, e00785 (2024)
Fantin, A.; Maria Manzoni, A.; Springer, H.; Darvishi Kamachali, R.; Maaß, R.: Local lattice distortions and chemical short-range order in MoNbTaW. Materials Research Letters 12 (5), pp. 346 - 354 (2024)
Souza Filho, I. R.; Ma, Y.; Raabe, D.; Springer, H.: Fundamentals of Green Steel Production: On the Role of Gas Pressure During Hydrogen Reduction of Iron Ores. JOM-Journal of the Minerals Metals & Materials Society 75, pp. 2274 - 2286 (2023)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The role of cementite on the hydrogen embrittlement mechanism in martensitic medium-carbon steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 859, 144204 (2022)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…