Remmele, T.; Schulz, T.; Markurt, T.; Korytov, M.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.: Quantitative measurement of composition fluctuations in InGaN quantum wells. 15th European Microscopy Congress, Manchester Central, UK (2012)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab-initio based comparitive study of In incorporation and surface segregation on III- and N-face {0001} InGaN surfaces. SINOPLE mid-term meeting, Berlin, Germany (2011)
Kalesaki, E.; Lymperakis, L.; Kioseoglou, J.; Komninou, P.; Karakostas, T.: Surface Thermodynamics of (11-22) and (11-2-2) Semipolar AlN Surfaces. International Workshop on Nitride Semiconductors, Tampa, FL, USA (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. IWoM3 2009 - International Workshop on Multiscale Materials Modeling, Berlin, Germany (2009)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: Hardness anisotropy of crystalline alpha-chitin: An ab-initio based conformational analysis. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: An ab-initio study of hardness anisotropy of crystalline alpha-chitin. International Max-Planck Workshop on Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Lymperakis, L.; Neugebauer, J.: Exploring the 5D configurational space of grain boundaries in aluminun: An ab-initio based multiscale analysis. MRS Fall Meeting, Boston, MA, USA (2006)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale calculations of low-angle grain boundaries in Aluminium. Materials Research Society fall meeting, Boston, MA, USA (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…