von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen-enhanced local plasticity mechanism. Materials Research Society (MRS) Fall meeting, Boston, MA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Polarization-induced charge carrier separation in realistic polar and nonpolar grown GaN quantum dots. Collaborative Conference on Interacting Nanostructures CCIN'09, San Diego, CA, USA (2009)
Friak, M.; Raabe, D.; Neugebauer, J.: First-principles based multi-scale approaches to the elasticity of metallic polycrystals and hierarchical bio-composites. AICES meets MPIE workshop, Monschau, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Highly p-doped GaN:Mg! What hinders the thermal drive-out of hydrogen? 2. Klausurtagung des Graduierten Kollegs: Mikro und Nanostrukturen in der Optoelektronik, Bad Karlshafen, Germany (2009)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Crustacean skeletal elements: Variations in the constructional morphology at different hierarchical levels. Seminar talk at Masaryk University, Brno, Czech Republic (2009)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio investigation of temperature dependent effects in magnetic shape memory Heusler alloys. SPP1239 Fokustreffen A "Fundamentals", Bonn, Germany (2009)
Counts, W. A.; Friak, M.; Raabe, D.; Neugebauer, J.: Ab Initio Determined Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys. 8th International Conference on Magnesium Alloys and their Applications, Weimar, Germany (2009)
Lymperakis, L.; Neugebauer, J.: Adatom Kinetics, Thermodynamics, and Si Incorporation on Non-Polar III-Nitride Surfaces: Implications on Nanowire Growth. 8th nternational Conference on Nitride Semiconductors, Jeju Island, South Korea (2009)
Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electro Chemistry: A Novel Approach to Construct ab Initio Electrochemical E/pH Diagrams. 216th ECS Meeting, Vienna, Austria (2009)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: Considerations on the magnetic contribution to the free energy of Fe and related alloys. MCA-Fe. International workshop "Modern computational approaches in iron based alloys”, Ekaterinburg, Russia (2009)
Neugebauer, J.: Computing the free energy: Possibilities, challenges and limitations of present day ab initio techniques. Workshop: “Modern computational approaches in iron based alloys”, Ekaterinburg, Russia (2009)
Dick, A.; Hickel, T.; Neugebauer, J.: Thermodynamics of high-Mn steels from ab initio theory. Workshop of the SFB761 "Steel - ab initio", Salzgitter, Germany (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. 1st International Conference on Material Modeling, Dortmund, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. 1st International Conference on Material Modelling, Dortmund, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…