Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Electrochemical water based in-situ TEM: case study of platinum based nanoparticles potential- and time-dependent changes. IAM Nano 2015 , Hamburg, Germany (2015)
Malyar, N.; Jaya, B. N.; Dehm, G.; Kirchlechner, C.: Dislocation transmission in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. Workshop „Understanding Grain Boundary Migration – Theory Meets Experiment”, Günzburg, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. 8th International Conference on High Temperature Capillarity (HTC-2015), Bad Herrenalb, Germany (2015)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves Phases. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting phenomena of epitaxial Al thin films on sapphire (α-Al2O3). 2nd International Multidisplinary Microscopy Congress (InterM 2014), Oludeniz, Fethiye, Turkey (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture toughness testing of brittle materials at the micron-scale. Thin Film & Small Scale Mechanical Behavior - Gordon Research Conference, Boston, MA, USA (2014)
Jeon, J. B.; Imrich, P. J.; Dehm, G.: Dislocation network formation in coherent twin boundary in Cu: Atomistic simulations. Schöntal symposium on dislocation-based plasticity, Bad Schöntal, Germany (2014)
Djaziri, S.; Li, Y.; Goto, S.; Kirchlechner, C.; Raabe, D.; Dehm, G.: Microstructural characterization of cold-drawn pearlitic steel wires at the nanometer scale. The Thin Film & Small Scale Mechanical Behavior Gordon Research Conference, Waltham, MA, USA (2014)
Fink, C.; Brinckmann, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Dislocation motion in bi-crystals with a specific grain boundary orientation studied by in situ SEM and in situ µLaue diffraction. Conference: Thin Film & Small Scale Mechanical Behavior Gordon Research , Waltham, MA, USA (2014)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Dislocation motion in bi-crystals with a specific grain boundary orientation studied by in situ SEM and in situ µLaue diffraction. Seminar: Thin Film & Small Scale Mechanical Behavior Gordon Research , Waltham, MA, USA (2014)
Philippi, B.; Kirchlechner, C.; Schießl, A.; Schingale, A.; Dehm, G.: Improving lead-free solders by resolving mechanical properties at the microstructure length scale. Thin Film & Small Scale Mechanical Behavior 2014, Gordon Research Conference, Waltham, MA, USA (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture behavior of gradient PtNiAl bond coats at the micron-scale using in-situ microbeam bend studies. 13th European Nanomechanical User Group Meeting, Oxford, UK (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Deformation behavior of thin Cu/Cr films on polyimide. Small Scale Plasticity School, Cargèse, Corsica, France (2013)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Cordill, M. J.; Dehm, G.: Adhesion behavior of Cu–Cr thin films on polyimide substrate. ECI Conference "Nano- and Micro-Mechanical Testing in Materials Research and Development IV", Olhão, Portugal (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…