Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C–C elastic interactions on the structural stability of dilute Fe–C solid solutions. EUROMAT 2009, Glasgow, UK (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C-C elastic interactions on the structural stability of dilute Fe-C solid solutions. Invited Talk at ICAMS, Bochum, Germany (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Multi-scale modeling of the phase stability of interstitial Fe-C solid solutions. Invited talk at MPI for Metal Research, Stuttgart, Germany (2009)
Udyansky, A.; Bugaev, V.; von Pezold, J.; Friák, M.; Neugebauer, J.: Modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution using embedded atom method potential. Contemporary Problems of Metal Physics, Kiev, Ukraine (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
Udyansky, A.; Friák, M.; Neugebauer, J.: An ab-initio study of the phase transitions in the interstitial Fe–C solid solutions. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Martensite formation in dilute Fe-based solid solutions: Ab initio based multi-scale approach. Ab initio Description of Iron and Steel: Mechanical properties, 468. Wilhelm und Else Heraeus-Seminar, Ringberg, Germany (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Martensite formation in dilute Fe-based solid solutions: Ab initio based multi-scale approach. Ab initio Description of Iron and Steel: Mechanical properties, 468. Wilhelm und Else Heraeus-Seminar, Ringberg, Germany (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Order/disorder transition of defects in ferrite: Ab initio based multi-scale approach. Psi-k 2010 Conference, Ab initio calculations of processes in materials and (bio)molecules, Berlin, Germany (2010)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interactions between C atoms in Fe–C solid solutions. International Workshop on Multiscale Materials Modelling (IWoM3), Berlin, Germany (2009)
Udyansky, A.; Friák, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.: First Principles Study of Fe–C interstitial solid solutions. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…