Grabke, H.-J.: Surface and interface reactions and diffusion during the high-temperature corrosion of metals and alloys. Defect and Diffusion Forum 194 - 199, pp. 1649 - 1660 (2001)
Müller-Lorenz, E. M.; Grabke, H.-J.: Metal dusting exposures of modified stainless steels. 5. Symp. on High Temperature Corrosion, pp. 955 - 962 (2001)
Piehl, C.; Tôkei, Z. S.; Grabke, H.-J.: Surface treatment and cold working as tools to improve oxidation behaviour of chromium steels. 5th Int. Symp. on High Temperature Corrosion, pp. 319 - 326 (2001)
Piehl, C.; Tôkei, Z. S.; Grabke, H.-J.: The role of fast diffusion paths in the selective oxidation of chromium steels. Defect and Diffusion Forum 194-199, pp. 1689 - 1694 (2001)
Sämann, N.; Spiegel, M.; Grabke, H.-J.: Influence of surface preparation on the corrosion of steels in simulated waste incineration environments. Materials Science Forum 369-372, pp. 963 - 970 (2001)
Grabke, H. J.; Müller-Lorenz, E. M.; Eltester, B.; Lucas, M.: Formation of chromium rich oxide scales for protection against metal dusting. Materials at High Temperatures 17 (2), pp. 339 - 345 (2000)
Grabke, H. J.; Müller-Lorenz, E. M.; Strauss, S.; Pippel, E.; Woltersdorf, J.: Effects of grain size, cold working, and surface finish on the metal-dusting resistance of steels. Oxidation of Metals 50 (3-4), pp. 241 - 254 (1998)
Grabke, H. J.; Müller-Lorenz, E. M.; Klöwer, J.; Agarwal, D. C.: Metal dusting of nickel-based alloys. Materials Performance 37 (7), pp. 58 - 63 (1998)
Grabke, H. J.; Müller-Lorenz, E. M.: Protection of high alloy steels against metal dusting by oxide scales. Materials and Corrosion-Werkstoffe und Korrosion 49 (5), pp. 317 - 320 (1998)
Schroer, C.; Spiegel, M.; Sauthoff, G.; Grabke, H.-J.: Fe–Cr–Si-alloys with enhanced resistance against high temperature corrosion in the presence of molten sulphate/chloride mixtures and HCl containing gases. Molten Salt Forum 5-6, pp. 441 - 446 (1998)
Biedenkopf, P.; Spiegel, M.; Grabke, H.-J.: High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions. Materials and Corrosion-Werkstoffe und Korrosion 48 (8), pp. 477 - 488 (1997)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.