Balun, J.; Inden, G.; Eleno, L. T. F.; Schön, C. G.: Phase Equilibria in the Ternary Fe–Rh–Ti System. TMS Annual Meeting 2003, International Symposium on Intermetallic and Advanced Metallic Materials – A Symposium dedicated to Dr. C.T. Liu, San Diego, CA, USA (2003)
Zhang, J.; Schneider, A.; Inden, G.: Metal dusting of iron in CO–H2–H2O mixtures at 700 °C. EFC-Workshop: Metal Dusting, Carburisation and Nitridation, Frankfurt, Germany (2003)
Palm, M.; Inden, G.: Experimentelle Bestimmung der Phasengleichgewichte in den Systemen Fe–Al–Ti und Fe–Al–Cr. 15. Vortragsveranstaltung des DVM Arbeitskreises Rastermikroskopie in der Materialprüfung, Kassel, Germany (1992)
Kwiatkowski da Silva, A.; Ponge, D.; Inden, G.; Gault, B.; Raabe, D.: Physical Metallurgy of segregation, austenite reversion, carbide precipitation and related phenomena in medium Mn steels. Gordon Research Conference: Physical Metallurgy, Biddeford, ME, USA (2017)
Belde, M. M.; Springer, H.; Inden, G.; Raabe, D.: Tailoring multi-phase steel microstructures by controlling local chemical gradients. MSE 2014, Darmstadt, Germany (2014)
Eleno, L. T. F.; Schneider, A.; Inden, G.: Experimental determination and thermodynamic modelling of Fe-based high-melting alloys. Calphad XXXIV, Maastricht / The Netherlands (2005)
Schneider, A.; Zhang, J.; Inden, G.: Metal dusting of Fe3Al-based alloys. Annual Meeting 2003, Symposium: International Symposium on Intermetallics and Advanced Metallic Materials, San Diego, CA, USA (2003)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.