Ankah, G. N.; Meimandi, S.; Renner, F. U.: Dealloying of Cu3Pd Single Crystal Surfaces. Journal of the Electrochemical Society 160 (8), pp. C390 - C395 (2013)
Valtiner, M.; Ankah, G. N.; Bashir, A.; Renner, F. U.: Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design. Review of Scientific Instruments 82 (2), pp. 023703-1 - 023703-8 (2011)
Renner, F. U.; Ankah, G.; Pareek, A.: Surface Morphology Changes during Dealloying. Pacific Rim Meetin on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Ankah, G. N.; Renner, F. U.; Rohwerder, M.: Fundamental Investigations of the Corrosion of Binary Alloys. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Ankah, G. N.: Investigations of the Selective Dissolution of Cu3Au(111): In-situ and Ex-situ Characterization. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.