Khorashadizadeh, A.; Raabe, D.; Winning, M.; Pippan, R.: Recrystallization and Grain Growth in Ultrafine-Grained Materials Produced by High Pressure Torsion. Advanced Engineering Materials 13, pp. 245 - 250 (2011)
Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.; Rohrer, G. S.; Rollett, A. D.; Winning, M.: Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials 13, pp. 237 - 244 (2011)
Winning, M.; Raabe, D.: Fast, Physically-Based Algorithms for Online Calculations of Texture and Anisotropy during Fabrication of Steel Sheets. Advanced Engineering Materials 12, pp. 1206 - 1211 (2010)
Winning, M.; Brahme, A.; Raabe, D.: Prediction of cold rolling textures of steels using an artificial neural network. Computational Materials Science 46, pp. 800 - 804 (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: 3D tomographic EBSD measurements of heavily deformed ultra fine grained Cu-0.17wt%Zr obtained from ECAP. Materials Science Forum 584-586, pp. 434 - 439 (2008)
Molodova, X.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal stability of ECAP processed pure Copper. Materials Science & Engineering A 460 / 461, pp. 204 - 213 (2007)
Molodova, X.; Khorashadizadeh, A.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal Stability of ECAP Processed Pure Cu and CuZr. Inter. Journal of Materials Research 98, pp. 269 - 275 (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. Materials Science Forum 558 / 559, pp. 1035 - 1042 (2007)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Zaefferer, S.; Kuo, J. C.; Zhao, Z.; Winning, M.; Raabe, D.: On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 51, pp. 4719 - 4735 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.