Schmitt, M.; Spiegel, M.: High Temperature Corrosion: Corrosion process of stainless steels and nickel base alloys under BtE and WtE conditions. International Conference on Waste and Biomass Combustion, Michelangelo Hotel Milano, Italy (2008)
Schmitt, M.; Spiegel, M.: Interim report on corrosion data: Dependence on variation of chemical environment. NextGenBioWaste, 2nd Progress Meeting 2008, Schiphol Airport Amsterdam, The Netherlands (2008)
Schmitt, M.; Spiegel, M.: Contribution to the analysis of the corrosion process of metallic materials in incineration plants. EUROCORR 2008, EICC Edinburgh, UK (2008)
Schmitt, M.; Spiegel, M.: High Temperature Corrosion: Corrosion mechanism of candidate materials in lab-scale incineration environments. General Assembly NextGenBioWaste 2008, De Zwijger Amsterdam, The Netherlands (2008)
Schmitt, M.; Spiegel, M.: Corrosion and fouling data of candidate materials for WtE components: Part II. NextGenBioWaste, 1st Progress Meeting 2008, Schiphol Airport Amsterdam, The Netherlands (2008)
Schmitt, M.; Spiegel, M.: Corrosion and fouling data of candidate materials for WtE components: Part I. NextGenBioWaste, 2nd Progress Meeting 2007, Schiphol Airport Amsterdam, The Netherlands (2007)
Schmitt, M.; Spiegel, M.: Introduction to the Working Group NGBW. NextGenBioWaste, 1st Progress Meeting 2007, Schiphol Airport Amsterdam, The Netherlands (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…