Friák, M.; Zhu, L.-F.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles study of the Ti-Fe eutectic system. Seminar at Institute of Physics of Materials at Czech Academy of Sciences, Brno, Czech Republic (2010)
Kim, O.; Friák, M.; Neugebauer, J.: Ab initio analysis of the carbon solubility limits in various iron allotropes. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti-Fe alloys. DPG Spring Meeting 2010, Regensburg, Germany (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti–Fe alloys. March meeting of the American Physical Society (APS), Portland, OR, USA (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Fundamental Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys Determined from Quantum-Mechanical Calculations. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Friák, M.; Hubert, J.; Emmerich, H.; Schlieter, A.; Kuehn, U.; Eckert, J.; Neugebauer, J.: Ab Initio Determination of Phase-Field Parameters Needed for Scale-Bridging Studies of Nucleation and Microstructure Formation in the Ti-Fe Eutectic System. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Friák, M.; Legut, D.; Sob, M.: Ab Initio Study of Extreme Loading Conditions in Transition-Metal Disilicides with the C40 Structure. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Schlieter, A.; Kuehn, U.; Friák, M.; Hubert, J.; Emmerich, H.; Neugebauer, J.; Eckert, J.: Experimental Investigations of the Ti-Fe-Eutectic System Needed for the Further Understanding of the Microstructural Evolution in an Eutectic Alloy at Different Cooling Rates. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we investigate the segregation behavior and complexions in the CoCrFeMnNi high-entropy alloys (HEAs). The structure and chemistry in the HEAs at varying conditions are being revealed systematically by combining multiple advanced techniques such as electron backscatter diffraction (EBSD) and atom probe tomography (APT).
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…